📖
Notes
  • 🙌Welcome!
  • CyberSecurity
    • Penetration Testing
      • ELearnSecurity
        • eJPT
          • Footprinting & Scanning
            • Port Scanning
            • Mapping Networks
          • Information Gathering
            • Subdomain Enumeration
          • Network Attacks
            • Arp Poisoning
            • Null Sessions
            • Windows Shares
            • Authentication Cracking
          • Networking
            • Python Server to Receive Exfiltrated Data
            • CLI Tool to interact with HTTP/HTTPS
          • Programming
            • C++ Keylogger
            • C++ Information Stealer
          • System Attacks
            • Pivoting
            • Backdoor
          • Vulnerability Assessment
          • Web Attacks
            • SQL Injection
            • HTTP Verbs
            • Web Server Fingerprinting
      • PortSwigger
        • Cross-origin resource sharing (CORS)
          • Access-Control-Allow-Origin response header
          • Vulnerabilities arising from Misconfigurations
            • Server-generated ACAO header from client-specified Origin header
            • Errors parsing Origin headers
            • Whitelisted null origin value
            • Exploiting XSS via CORS trust relationships
            • Breaking TLS with poorly configured CORS
            • Intranets and CORS without credentials
            • Mitigations
        • Sql Injection
          • Examining the database
          • Retrieving data from other database tables
          • Blind SQL injection
          • Mitigation
      • TryHackMe
        • Main Methodology
          • 1. Reconnaissance
            • Google Dorking
            • Metadata Reader/Writer
            • Steghide - Stegnography
            • OSINT Framework
          • 2. Enumeration/Scanning
            • NFS Enumeration Tools
            • NMAP - Port Scanning
            • Web Enumeration Tools
            • SMB Enumeration Tools
            • SMTP Enumeration Tools
            • Shodan - IOT Search Engine
            • FTP Enumeration Tools
            • Wordpress Enumeration Tools
            • OWASP ZAP - WebApp Testing
            • BurpSuite - WebApp Testing
            • MySQL Enumeration Tools
            • Wordlists
          • 3. Gaining Access / Exploitation
            • Buffer Overflow
              • 1. Immunity Debugger
              • 2. Mona Setup
              • 3. Spiking
              • 4. Fuzzing
              • 5. Crash Replication & Controlling EIP
              • 6. Finding Bad Characters
              • 7. Find a Jump Point
              • 8. Generate Payload
              • 9. Prepend NOPs
              • 10. Final Buffer
            • Cryptography
              • Hash Crack Tools
              • Online Password Cracking Tools
              • Encryption
              • John the Ripper
            • Evasion Techniques
            • Shells
              • Powershell
              • Msfvenom
              • Meterpreter
              • Metasploit -- multi/handler
              • Netcat
              • Socat
            • Web Applications
              • OWASP Top 10
              • File Upload Vulnerabilities
              • Authentication Vulnerability
              • XML External Entity (XXE)
              • Cross-Site Scripting (XSS)
              • ZTH: Obscure Web Vulns
              • Server Side Request Forgery (SSRF)
              • Insecure Direct Object Reference (IDOR)
              • ZTH : Continued
              • File Inclusion Vulnerability
                • Local File Inclusion (LFI)
                • Log Poisoning Attack (LFI to RCE via Log files)
            • Windows Applications
              • Jenkins
              • Windows Active Directory
                • Impacket's secretsdump.py
                • Kerberos
                  • Enumerating Users with Kerbrute
                  • Enumerating SPN Accounts with Powershell
                  • Get SPN Account Ticket with Invoke-Kerberoast
                  • Kerberoasting with Rubeus & Impacket
                  • AS-REP Roasting with Rubeus/GetNPUsers.py
                  • Pass the Ticket with mimikatz
                  • Golden/Silver Ticket Attacks with mimikatz
                  • Kerberos Backdoors with mimikatz
                  • Harvesting and Brute-Forcing with Rubeus
                  • Conclusion and Resources
          • 4. Post Exploitation
            • Privilege Escalation
              • Linux
                • 1. Introduction
                • 2. Scripts
                • 3. Kernel Exploits
                • 4. Service Exploits
                • 5. Weak File Permissions
                • 6. Sudo
                • 7. Cron jobs
                • 8. SUID/SGID Executable
                • 9. CAP_SETUID Capabilities Executable
                • 10. Passwords & Keys
                • 11. NFS
                • PrivEsc CTF Checklists
              • Windows
                • Token Impersonation
                • PrivEsc CTF Checklists
                • Permission
                • Scripts
                • Unquoted Service Path
            • Tools
              • Meterpreter Modules
              • Impacket's Psexec
              • Impacket's mssqlclient.py
              • Firefox Decryptor
              • Socat - Reverse TCP Tunnel
            • Windows Active Directory
              • Enumeration with Powerview
              • Enumeration with Bloodhound (GUI)
              • Dumping Hashes with mimikatz
              • Golden Ticket Attacks with mimikatz
              • Enumeration with Server Manager
              • Maintaining Access
              • Additional Resources
          • 5. Covering Tracks
          • 6. Reporting
        • Networking Concepts
          • SSH Reverse Tunnels
        • Scripting
          • Curl
          • Powershell
            • Basic Powershell Commands
            • Enumeration
        • Web Extensions
          • Shodan
          • Wappalyzer
      • Miscellaneous
        • SMTP Enumeration
        • Nmap Advanced Scanning
        • Persistence via Meterpreter
        • DNS Enumeration
        • NetBIOS & SMB
        • DHCP Starvation
        • Packet Manipulation
        • Hash Cracking
        • MITM
        • Msfvenom Payload in APK (Manual Embedding)
    • Blue Teaming
      • Digital Forensics & Incidence Response
        • Memory Acquisition with LIME
        • Disk Analysis with Autopsy
        • Data and Memory Collection with FireEye Redline
        • Memory Forensice with Volatility
      • Intrusion Detection
        • Intrusion Detection Systems (IDS)
        • Threat Monitoring with Security Information & Event Management (SIEM)
        • Security Event Monitoring
        • Host Based Intrusion Detection System (HIDS) - OSSEC
      • Miscellaneous
        • Docker Image Security Analysis with Trivy
  • DevOps
    • Infrastructure as a Code (IaC)
      • Ansible
        • 1. Playbooks
        • 2. Modules
        • 3. Inventory
        • 4. Roles
        • 5. Ansible Tower
      • Terraform
        • 1. Overview
        • 2. Modify Resources
        • 3. Delete Resources
        • 4. Reference Resources
        • 5. Terraform Files
        • 6. Terraform State Commands
        • 7. Terraform Output
        • 8. Target Resources
        • 9. Terraform Variables
        • 10. Expressions + Functions
        • 11. Meta-Arguments
        • 12. Modules
        • 13. Managing Multiple Environments
        • 14. Testing Terraform Code
        • 15. Final Thoughts
    • Orchestration
      • Kubernetes
        • 1. Main K8s Components
        • 2. K8s Architecture
        • 3. Minikube & Kubectl
        • 4. YAML Configuration File
        • 5. K8s Namespaces
        • 6. K8s Ingress
        • 7. Helm - Package Manager of K8s
        • 8. K8 Volumes
        • 9. K8 StatefulSet
        • 10. K8 Services
  • Development
    • Blockchain
      • FreeCodeCamp Course
        • 1. Introduction
        • 2. Solidity Basics
        • 3. Storage Factory
        • 4. Fund Me
        • 5. Ethers.js
        • 6. Hardhat
        • 7. Hardhat | Fund Me
        • 8. Contract Lottery | Raffle
        • 9. IPFS
        • 10. ERC20s
        • 11. DeFi & Aave
        • 12. NFTs | Encoding
        • 13. Reentrancy Attack
    • Backend
      • NodeJs
        • Introduction
        • Additional Concepts
        • ExpressJs
    • Database
      • SQL
        • Basics
          • 1. Querying Data
          • 2. Filtering Data
          • 3. Joining Multiple Tables
          • 4. Grouping Data
          • 5. Set Operations
          • 6. Grouping Sets, Cube, and Rollup
          • 7. Subquery
          • 8. Common Table Expressions
          • 9. Modifying Data
          • 10. Transactions
          • 11. Import & Export Data
          • 12. Managing Tables
    • Testing
      • Test Driven Development (TDD)
      • Jest js
      • Cypress js
Powered by GitBook
On this page
  • Key Terms
  • Rainbow Tables
  • Protection against Rainbow Tables
  • Recognizing Password Hashes
  • HMACs
  1. CyberSecurity
  2. Penetration Testing
  3. TryHackMe
  4. Main Methodology
  5. 3. Gaining Access / Exploitation

Cryptography

Key Terms

Plaintext

Data before encryption or hashing, often text but not always as it could be a photograph or other file instead.

Encoding

This is NOT a form of encryption, just a form of data representation like base64 or hexadecimal. Immediately reversible.

Hash

A hash is the output of a hash function. Hashing can also be used as a verb, "to hash", meaning to produce the hash value of some data.

Brute force

Attacking cryptography by trying every different password or every different key

Cryptanalysis

Attacking cryptography by finding a weakness in the underlying maths


Rainbow Tables

A rainbow table is a lookup table of hashes to plaintexts, so you can quickly find out what password a user had just from the hash. A rainbow table trades time taken to crack a hash for hard disk space, but they do take time to create.

Example

Hash : Password 02c75fb22c75b23dc963c7eb91a062cc : zxcvbnm b0baee9d279d34fa1dfd71aadb908c3f : 11111


Protection against Rainbow Tables

To protect against rainbow tables, we add a salt to the passwords. The salt is randomly generated and stored in the database, unique to each user.

The salt is added to either the start or the end of the password before it’s hashed, and this means that every user will have a different password hash even if they have the same password.


Recognizing Password Hashes

Automated hash recognition tools exist, but they are unreliable for many formats. For hashes that have a prefix, the tools are reliable. If you found the hash in a web application database, it's more likely to be md5 than NTLM. Automated hash recognition tools often get these hash types mixed up,

Unix Password Hashes

Unix style password hashes are very easy to recognise, as they have a prefix. The prefix tells you the hashing algorithm used to generate the hash. The standard format is $id$salt$hashed

On Linux, password hashes are stored in /etc/shadow. This file is normally only readable by root. They used to be stored in /etc/passwd, and were readable by everyone.

Windows Password Hashes

Windows passwords are hashed using NTHash/NTLM, which is a variant of md4. They're visually identical to md4 and md5 hashes, so it's very important to use context to work out the hash type.

On Windows, password hashes are stored in the SAM. Windows tries to prevent normal users from dumping them, but tools like mimikatz or from the Active Directory database: NTDS.dit exist for this. Importantly, the hashes found there are split into NT hashes and LM hashes.

You may not have to crack the hash to continue privilege escalation- as you can often conduct a "pass the hash" attack instead, but sometimes hash cracking is a viable option if there is a weak password policy.

Windows NLTM hash format is Username:Relative Identifier:LM Hash:NT Hash


HMACs

HMAC is a method of using a cryptographic hashing function to verify the authenticity and integrity of data.

A HMAC can be used to ensure that the person who created the HMAC is who they say they are (authenticity), and that the message hasn’t been modified or corrupted (integrity).

They use a secret key, and a hashing algorithm in order to produce a hash.

Previous10. Final BufferNextHash Crack Tools

Last updated 1 year ago

A great place to find more hash formats and password prefixes is the

hashcat example page